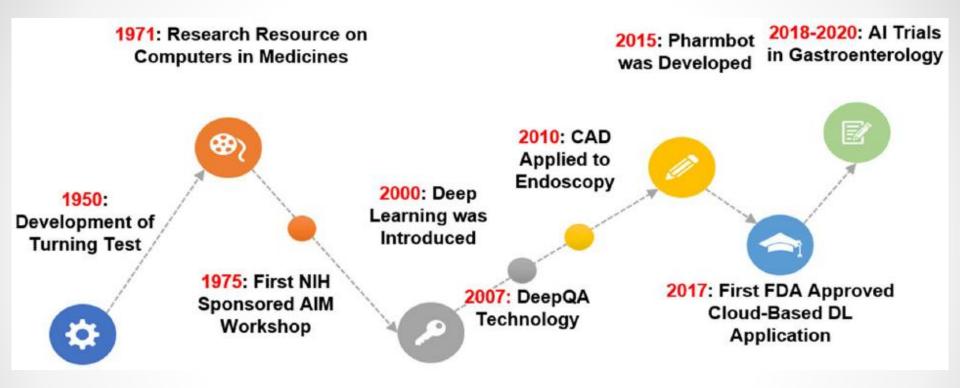
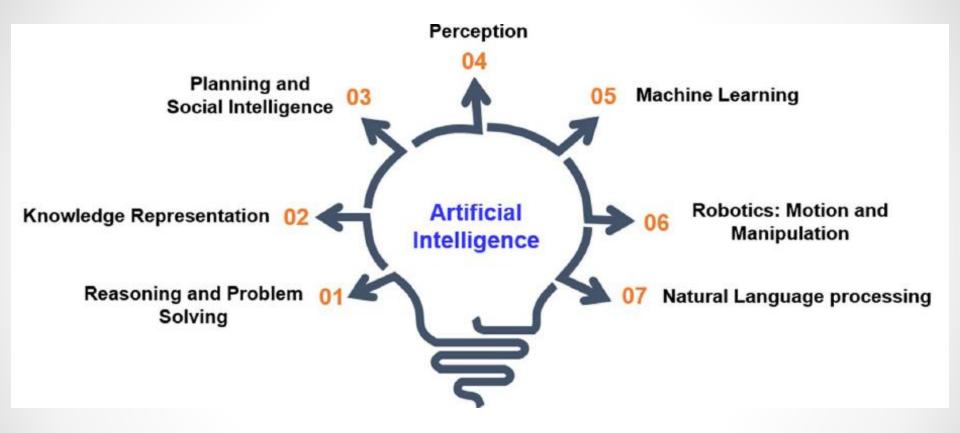
## **Artificial Intelligence in Drug Design and Synthesis**

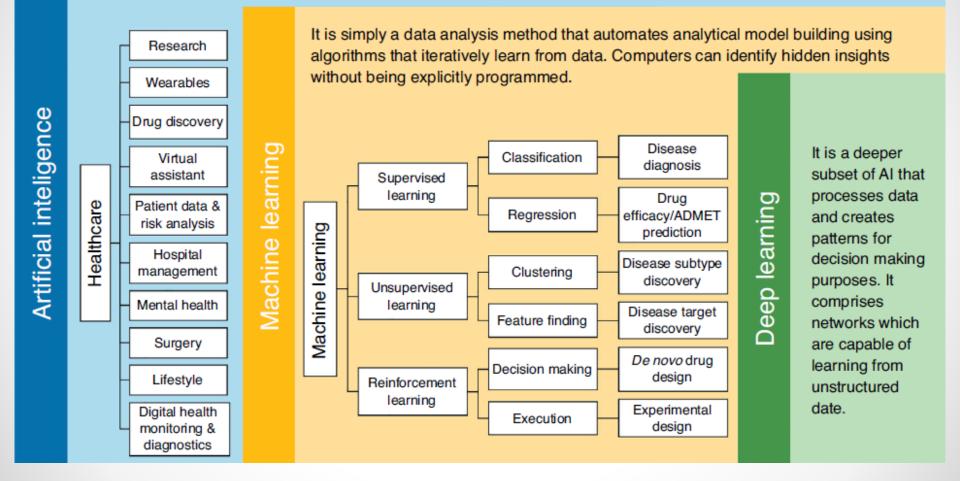



#### Dr. Balakumar Chandrasekaran M. Pharm, PhD, PostDoc Professor-Faculty of Pharmacy Philadelphia University-Jordan


## **Artificial Intelligence (AI)**

- AI is a technology-based system involving various advanced tools and networks that can mimic human intelligence.
- AI utilizes systems and software that can interpret and learn from the input data to make independent decisions for accomplishing specific objectives.
- AI involves several method domains like reasoning, knowledge representation, solution search, and machine learning (ML).
- A subfield of the ML is deep learning (DL), which engages artificial neural networks (ANNs).

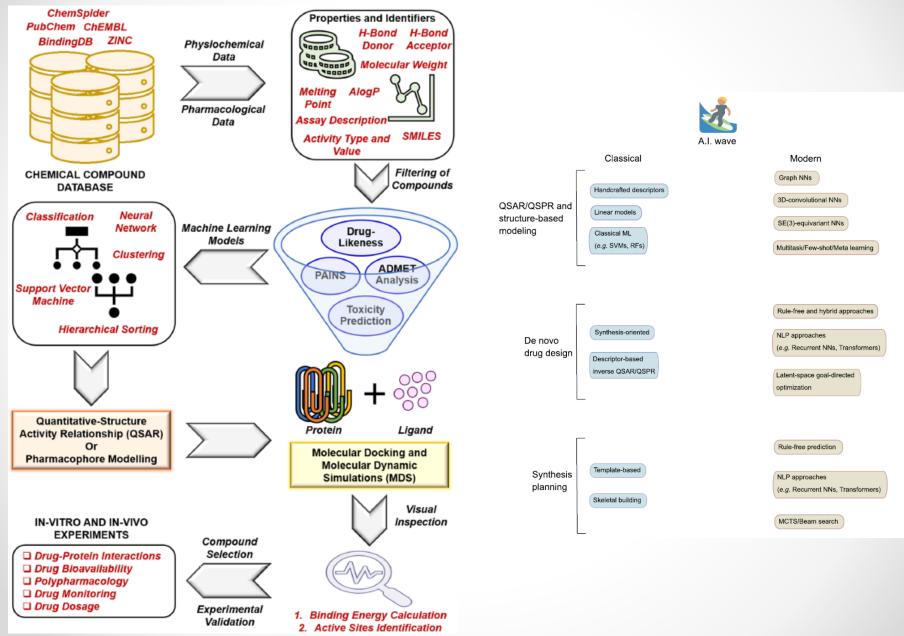
## **Artificial Intelligence: History**




## **Artificial Intelligence: Classification**



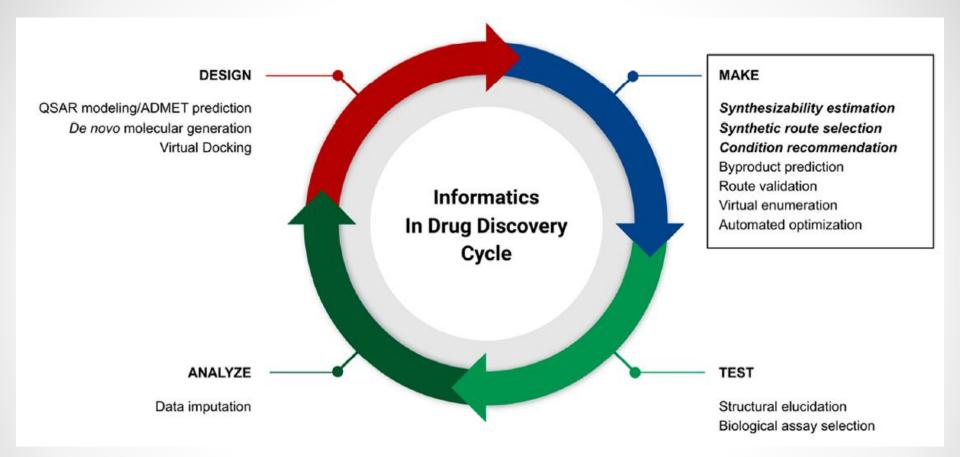
### **Artificial Intelligence: Application areas**


Any technique which enables computers to mimic human brain.



## **Artificial Intelligence**

- These comprise a set of interconnected sophisticated computing elements involving 'perceptons' analogous to human biological neurons, mimicking the transmission of electrical impulses in the human brain.
- Artificial International Business Machine Intelligence (IBM) Machine Percepton learning Support vector Watson supercomputer (IBM, machine **Recurrent neural** network New York, USA). Artificial Instance-**Decision tree** Feed/forward k-Nearest based neural Suggesting treatment network neighbor algorithm network algorithm Botzmann strategies for cancer and network Classification Self-organizing and regression Random forest map tree its detection. Convolutional neural network


### **Artificial Intelligence in Drug Discovery**



### **AI in Drug Discovery**

| Drug<br>Design                      | Synthesis        | Drug<br>repurposing | Pharmacolo<br>gy                 |
|-------------------------------------|------------------|---------------------|----------------------------------|
| Predict<br>target prt               | Pdt Yield        | Predict new target  | Predict<br>activity              |
| Predict prt-<br>drug<br>interaction | Rxn<br>Mechanism | Predict new<br>use  | Predict<br>toxicity              |
| Predict<br>activity                 | Synthetic route  | Design new<br>drug  | Predict<br>Physico-<br>chem prop |

## AI in Drug Design & Synthesis



FOUR CRUCIAL STAGES: 1. Design, 2. Synthesis, 3. Testing, 4. Analyzing of new drugs.

## AI in Drug Design: Prediction tools for target protein structures

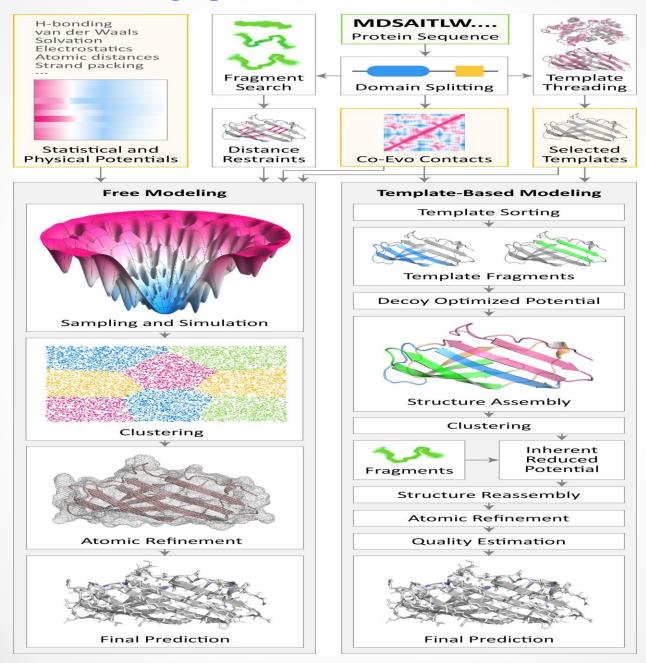
AlphaFold: <u>https://deepmind.com/blog/alphafold</u>

It is based on deep neural network (DNN)

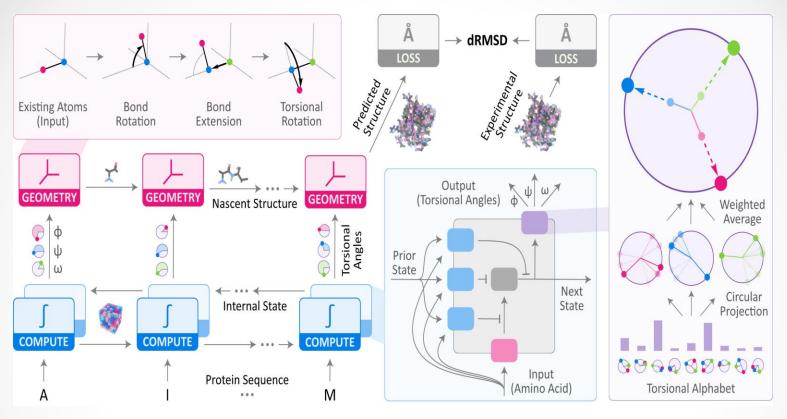
It is used to analyze the distance between the adjacent amino acids and the corresponding angles of the peptide bonds.

PotentialNet:-

https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507


It is based on neural network (NN).

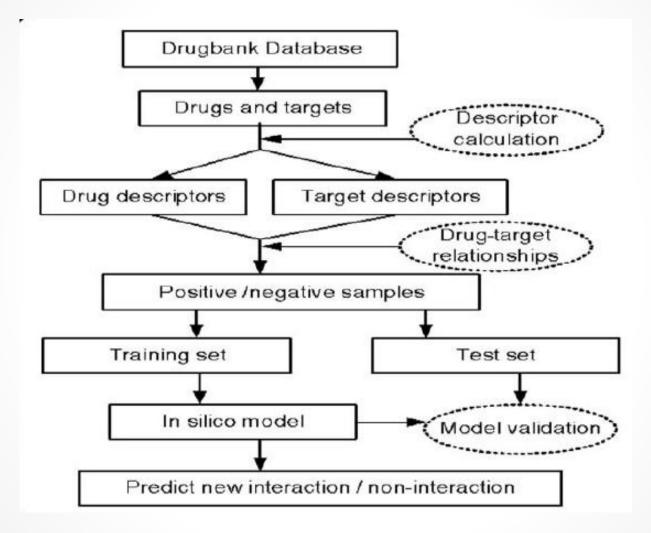
It is used to predict the binding affinity of the ligand.


DeltaVina: <u>https://github.com/chengwang88/deltavina</u>

It is a scoring function for rescoring drug–ligand binding affinity.

#### **Prediction tools for target protein structures: Conventional techniques**




#### **Prediction tools for target protein structures: Recurrent Geometric network (RGN)**



- Protein sequences are fed one residue at a time to the computational units of an RGN. [*Cell Systems* 2019, *8*, 292].
- Based on these computations, torsional angles are predicted and fed to geometric units.
- dRMSD is used to measure deviation from experimental structures, serving as the signal for optimizing RGN.

#### **Prediction of drug-protein interactions: (i) Random Forest (RF)**

(ii) Support Vector Machine (SVM).



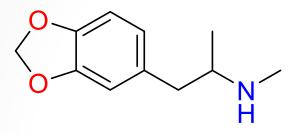
Flow chart of the modeling process.

#### **Prediction of drug-protein interactions: (i) Random Forest (RF)**

#### (ii) Support Vector Machine (SVM).

#### Predicted results for a model in RF

| Dataset          | SE (RF/BGL)   | SP(RF/BGL)    | CO(RF/BGL) | AUC(RF/BGL) |
|------------------|---------------|---------------|------------|-------------|
| Enzyme           | 35.82%/57.40% | 82.70%/99.50% | 59.26%/    | 67.43/90.40 |
| GPCR             | 80.31%/23.40% | 55.64%/99.90% | 67.98%/    | 72.95/89.90 |
| lon channel      | 54.09%/27.10% | 73.38%/99.60% | 63.73%/    | 66.58/85.10 |
| Nuclear receptor | 91.57%/14.80% | 39.76%/99.90% | 65.66%/    | 82.29/84.30 |
| Average          | 47.51%/       | 74.93%/       | 61.64%/    | 66.68/      |


Dataset: DrugBank database Descriptor: DRAGON PROFEAT WEBSEVER Random Forest algorithm SE: sensitivity SP: specificity CO: compound-protein pairs BGL: Bipartite graph learning

#### Predicted results for top 5 scoring novel drug-target interactions

| Protein name (UniProt ID)                  | Drug generic name (DrugBank ID)                     | Binding score |
|--------------------------------------------|-----------------------------------------------------|---------------|
| NAD(P)H dehydrogenase [quinone] 1 (P15559) | Flavin-N7 protonated-adenine dinucleotide (DB02332) | 0.996         |
| NAD(P)H dehydrogenase [quinone] 1 (P15559) | NADH (DB00157)                                      | 0.994         |
| Alcohol dehydrogenase [NADP+] (P14550)     | NADH (DB00157)                                      | 0.992         |
| Prostaglandin G/H synthase 1 (P23219)      | Bromfenac (DB00963)                                 | 0.992         |
| Prostaglandin G/H synthase 1 (P23219)      | D-allopyranose (DB03989)                            | 0.990         |

### **Novel Target Prediction for an existing drug: MDMA**

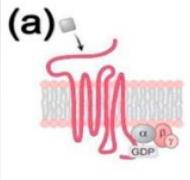
3,4-Methylene-dioxy-methamphetamine (MDMA) Psychoactive drug



#### Predicted top 5 scoring target proteins for the same drug MDMA

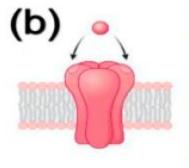
| Protein name                 | UniProt ID | Binding score |
|------------------------------|------------|---------------|
| Beta-1 adrenergic receptor   | P08588     | 0.820         |
| Carbonic anhydrase 2         | P00918     | 0.810         |
| Prothrombin                  | P00734     | 0.804         |
| Alpha-2A adrenergic receptor | P08913     | 0.802         |
| Prostaglandin G/H synthase 2 | P35354     | 0.800         |
| Dipeptidyl peptidase 4       | P27284     | 0.798         |

# **Novel Drug Prediction for an existing target:**


### **Thymidine kinase**

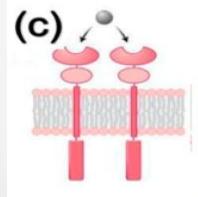
#### Predicted top 10 scoring drugs for the same target: Thymidine kinase

| Drug generic name                    | DrugBank<br>ID | Binding<br>score |
|--------------------------------------|----------------|------------------|
| NADH                                 | DB00157        | 0.870            |
| Nicotinamide-Adenine-Dinucleotide    | DB01907        | 0.848            |
| Adenosine-5'-Diphosphate             | DB03431        | 0.844            |
| Guanosine-5'-Diphosphate             | DB04315        | 0.808            |
| Acetate lon                          | DB04184        | 0.792            |
| Mesoheme                             | DB02577        | 0.786            |
| Heme                                 | DB03014        | 0.786            |
| Idoxuridine                          | DB00249        | 0.762            |
| Pentostatin                          | DB00552        | 0.656            |
| 1-Beta-Ribofuranosyl-1,3-Diazepinone | DB03185        | 0.622            |


#### [*PLoS One* **2012**, 7, e37608].

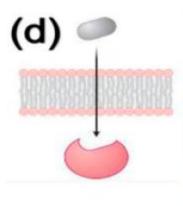
### **Software tools for Drug-Receptor Interaction Prediction**




#### iDrug-GPCR:

The web-server for predicting the interaction between GPCRs and drugs in cellular networking.




#### iDrug-Chl:

The web-server for predicting the interaction between ion channels and drugs in cellular networking.



#### iDrug-Ezy:

The web-server for predicting the interaction between enzymes and drugs in cellular networking.



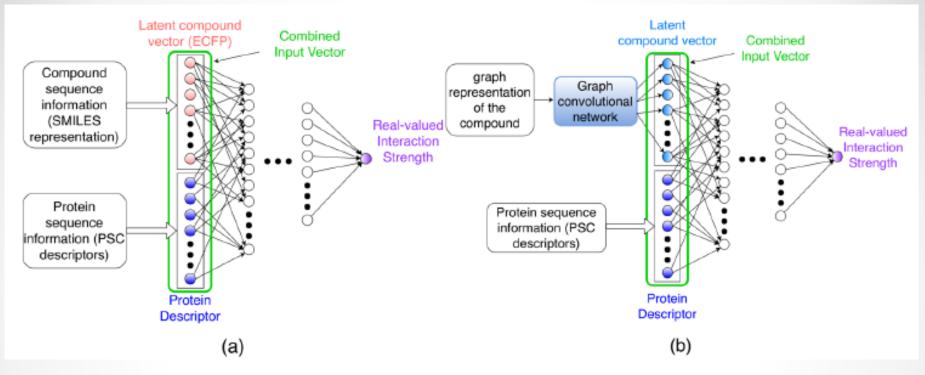
#### iDrug-NR:

The web-server for predicting the interaction between nuclear receptors and drugs in cellular networking.

[http://www.jci-bioinfo.cn/iDrug-Target/]

### **Prediction of pharmacological activity/affinity of drugs**

- DeepNeuralNetQSAR: <u>https://github.com/Merck/DeepNeuralNet-QSAR</u>
- It utilizes python-based tools and is used to detect molecular activity of a compound.
- Neural graph fingerprint: <u>https://github.com/HIPS/neural-fingerprint</u> It is used to predict the properties of novel molecules.
- DeepTox: <u>www.bioinf.jku.at/research/DeepTox</u>


Software that predicts the toxicity of 12 000 drugs

DeepDTA, PADME, WideDTA, and DeepAffinity are some DL methods used to measure Drug-target binding affinity (DTBA).

## **PADME:** A Deep Learning-based Framework for Drug-Target Interaction Prediction

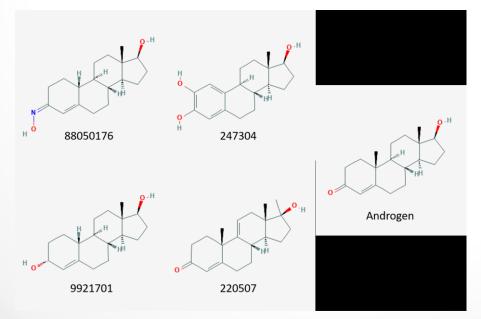
- PADME: Protein And Drug Molecule interaction prEdiction.
- It is used to predict real-valued interaction strength between compounds and proteins.
- PADME takes both compound and protein information as inputs to solve cold-target (problems involving target protein that never appeared in the training set) or cold-drug problems.
- A study by Feng et al., integrated Molecular Graph Convolution (MGC) for compound featurization with protein descriptors.
- Authors used multiple cross-validation split schemes and evaluation metrics to measure the performance of PADME.
- The success of the PADME tool was demonstrated by taking an example of androgen receptor (AR) against predicting the binding affinity between various compounds.

### Methodology



#### (a) PADME-ECFP (extended connectivity finger print) architecture.

(b) PADME-GraphConv architecture.

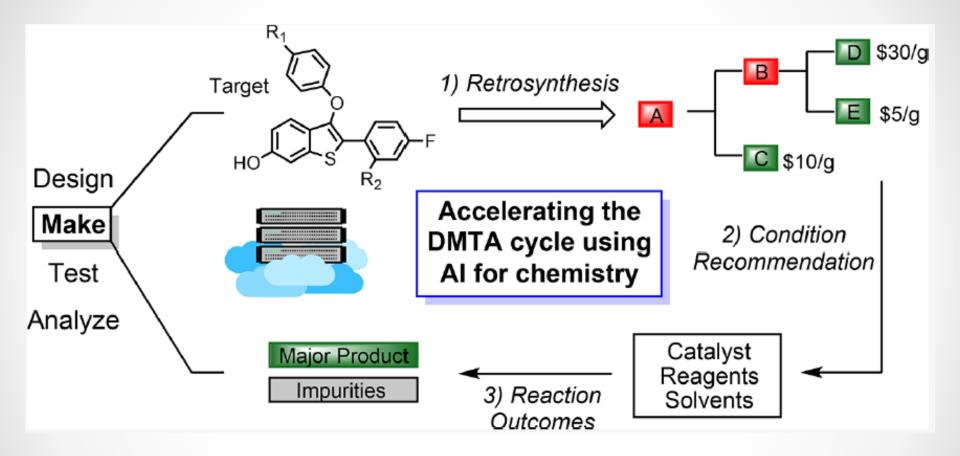

Black dots represent omitted neurons and layers;

#### **CIV:** Combined Input Vector.

Compound feature vectors generated using DNN; graph representation of molecules, the atoms are denoted by nodes, while the bonds are denoted by edges.

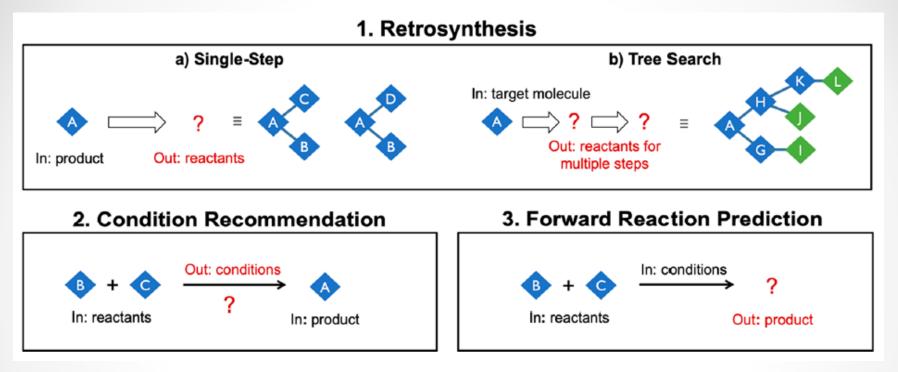
### A case study: Androgen receptor (AR)

- Ligands: US National Cancer Institute human tumour cell line anticancer drug screen data (NCI60), totaling more than 100000.
- PADME-ECFP and PADME-GraphConv trained on whole ToxCast dataset.
- Average of their predictions were determined, known as averaged model PADME-Ensemble.
- Top 30 compounds are predicted to bind strongly with AR, out of that 4 compounds are selected as active.




[arXiv:1807.09741, **2008**].

## **AI in Synthesis of drugs**


- Chemputer: <u>https://zenodo.org/record/1481731</u>
  It helps to report procedure for chemical synthesis in standardized format.
- DeepChem: <u>https://github.com/deepchem/deepchem</u>
   It is a multilayer perception (MLP) model that uses a python-based
   AI system to find a suitable candidate in drug discovery program.
- ORGANIC: <u>https://github.com/aspuru-guzik-group/ORGANIC</u> A molecular generation tool that helps to create molecules with desired properties.
- Chematica and ICSynth: Regularly used software tools in industries.

## **AI in Synthesis of drugs**

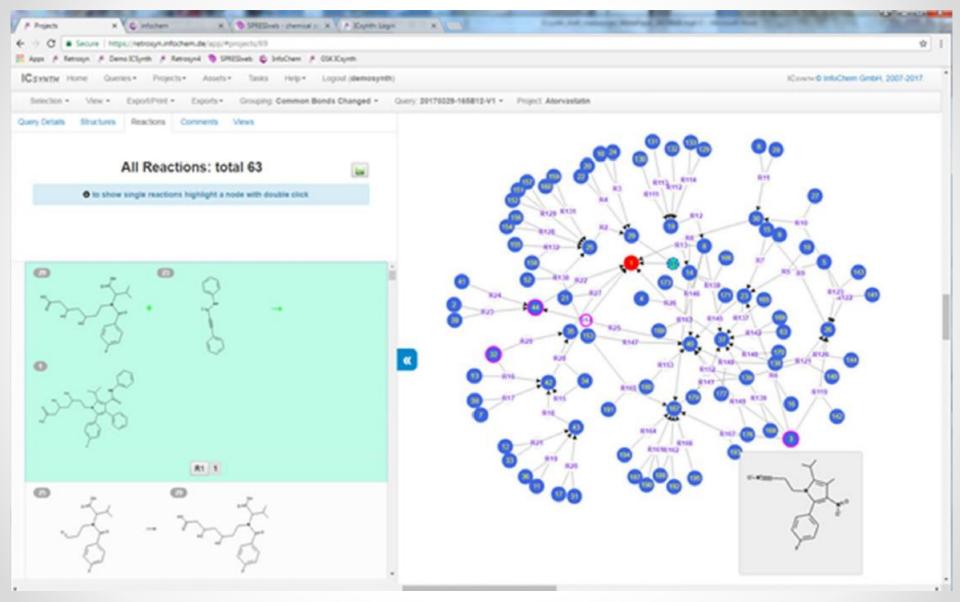


**CASP**: Computer-aided synthesis planning

## AI in Synthesis of drugs: 1. Retrosynthesis

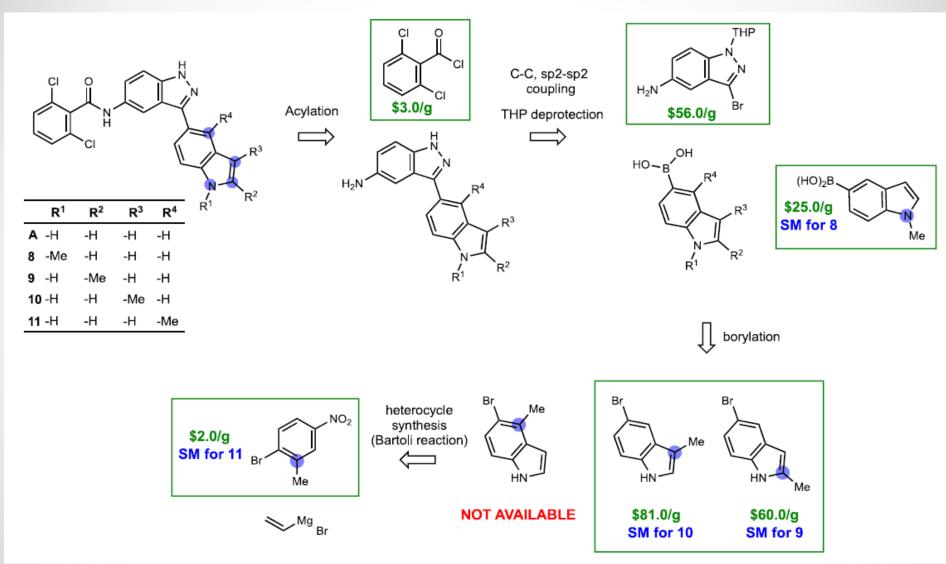


- Retrosynthesis can be broken into subproblems of (a) the generation of retrosynthetic suggestions one step at a time and (b) the recursive use of the singe step suggestions to identify full, multistep routes.
- (2) **Reaction conditions** that will lead to a successful forward reaction must be recommended.
- (3) **Reaction prediction** of the possible products from a set of starting materials and conditions for the proposed synthetic steps.


- Expert encoded rules (first wave-AI) and ML methods (second wave-AI) are AI tools in synthesis.
- First wave-AI: Crafted knowledge
- Second wave-AI: Statistical methods
- Two categories of methods for scoring compounds by synthesizability: simplified structure-based heuristics or full retrosynthetic tree expansions.
- ✤ A general procedure for the algorithmic extraction of reaction templates from a reaction data set :
  - (1) identify the reaction center or changing atoms
  - (2) identify atoms adjacent to the reaction center
  - (3) add generalized functional groups involved in the reaction.
- ✤ A single-step retrosynthetic recommender is sufficient to construct routes for one-step reaction at a time.
- Similarly, it can be extended to derive synthetic route for multistep organic synthesis using a tree search.
- Each step can produce thousands of precursors.

### **Retrosynthesis: ICSYNTH Software by InfoChem**

|                                                                                                              | Start                                          |                        |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|
| lew Query                                                                                                    |                                                |                        |
| Parameters                                                                                                   |                                                |                        |
| Name:                                                                                                        | Suggestions (1st Level)                        | Target:                |
| 20170710-091221                                                                                              | 20 •                                           | 0                      |
| Algorithm:                                                                                                   | Steps.                                         |                        |
| * New                                                                                                        | 1                                              | 2 2m                   |
| O Old                                                                                                        |                                                | Q~                     |
| Unprecedented                                                                                                | Precision.                                     |                        |
| Mode:                                                                                                        | Medium                                         | Edt Save Upload Select |
| Background                                                                                                   | Strategy                                       |                        |
|                                                                                                              | Core Disconnection 1.0 (put *                  |                        |
| ibraries                                                                                                     |                                                | Comment                |
| GAC (ca 5,300 reactions) (cac_1340_r)                                                                        |                                                |                        |
| Cheminform (ca 1,1M reactions) (chemin                                                                       | nform_1340_r)                                  |                        |
| SPRESI singleton reactions (ca 450,000                                                                       | reactions) (chemsynth2012_1_1340_r)            |                        |
|                                                                                                              | ca 800,000 reactions) (chemsynth2012_2_1340_r) |                        |
|                                                                                                              | (ca 3M reactions) (chemsynth2012_3plus_1340_r) |                        |
| EROS (ca 90,000 reactions) (eros_1340                                                                        |                                                |                        |
| <ul> <li>Name reactions (ca 5,000 reactions) (os</li> <li>Name reactions (ca 5,000 reactions) (os</li> </ul> |                                                |                        |
| <ul> <li>Name reactions (ca 5,000 reactions) (os</li> <li>Fundamental Organic Reactions (ca 210</li> </ul>   |                                                |                        |
| Science of Synthesis (ca 270,000 reactiv                                                                     |                                                |                        |


#### Search set up: ICSYNTH (rule-based method)

### **Retrosynthesis: ICSYNTH Software by InfoChem**

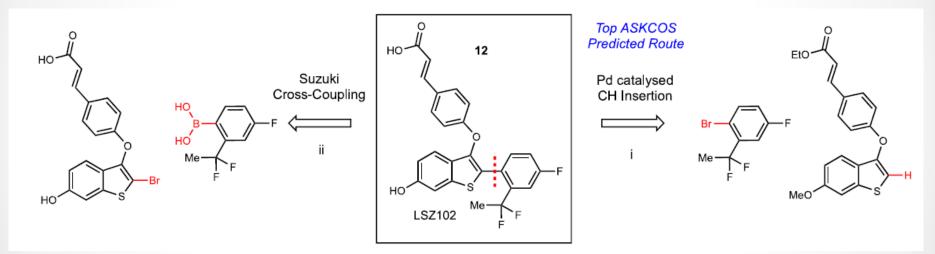


**Results visualization**: Dynamic reaction graph

### **Retrosynthetic analysis using ASKCOS software**



**ASKCOS**: It proposes the possible synthetic route based on the availability of the starting material.


### AI in Synthesis of drugs: 2. Reaction condition planning

Challenges in condition predictions:-

(1) Amounts, volumes, or concentrations

(2) Reaction times or kinetics

(3) Order of the addition of reagents and catalysts



**Optimized condition**: Pd-catalyzed C–H activation, identified the requirement for both high temperature and polar aprotic solvents (DMF/DMA) in the top 3 proposed conditions. This was applied to a diverse range of substrate starting materials and observed yields in the range of 39–97%.

### AI in Synthesis of drugs: 3. Forward Reaction Prediction

- □ To ensure algorithmic synthesis design are robust and actionable by anticipating, at least qualitatively, reaction products, forward reaction predictive analysis generally conducted.
- □ The feasibility of a reaction needs to be determined by searching for similar transformations, reading the literature, and determining if the synthetic method will generalize to the substrates of interest.
- Data-driven techniques can learn to perform the same generalization when trained on a broad set of reactions: ML
- Graph convolutional neural networks predict atom and bond changes from starting materials to products.
- Sequence-to-sequence models which predict product SMILES (Simplified Molecular Input Line Entry System).
- □ Other methods: make-on-demand virtual libraries based on expert-defined reaction templates.

# **Challenges in Drug Discovery using AI**

- Companies who use AI technology for drug discovery has to go through vigorous process to copyright their work so as to secure patent rights.
- Security is also a major concern, as AI-driven personalized medicine requires person's genetic code (legal issues).
- Faster computation will be required for handling big data and it is said that in future the current supercomputers will be replaced by quantum computers.
- Still no success story where a compound generated through AI made it to the market for public use.
- Insilico medicine, a biotechnology company, proposed a novel target involved in idiopathic pulmonary fibrosis and made its novel inhibitor from scratch, through their AI-based tools.
- □ The identified small molecule inhibitor has showed good efficacy and applied for investigational new drug (IND) in Dec-2020.
- Expected clinical trials will be late 2022 by that company.

# References

[1] Paul et al., *Drug Discov. Today*, **2021**, *26*, 80-93.

[2] Jordan A.M., ACS Med. Chem. Lett., 2018, 9, 1150-1152.

[3] Lake F., Future Drug. Discov., 2019, 1, FDD19.

[4] Mak et al., Drug Discov. Today, 2019, 24, 773-780.

[5] Jose et al., Expert Opin. Drug Discov., 2021, [DOI: 10.1080/17460441.2021.1909567].

[6] C. Balakumar et al., J. Biomol Struc. Dyn., 2018, 36, 3687-3704.

[7] Struble et al., J. Med. Chem. Lett., 2020, 63, 8667-8682.

[8] Freedman D.H., Nature, 2019, 576, S50-S53.

[9] Hessler et al., *Molecules*, **2018**, *23*, 2520.